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Abstract
In this paper we study the response of an ellipsoidal particle with a dielectrically
anisotropic coating (the coating dielectric function being different parallel and
perpendicular to the coating normal) placed in a constant external electric
field. For the coating region we find that potential can be written in terms
of solutions to a one-dimensional Heun’s equation which is derived from the
three-dimensional Gauss equation for the potential in ellipsoidal coordinates.
We give solutions to Heun’s equation in three forms: for the general case we
obtain solutions in terms of a series expansion. For the case of spheroidal
particles we write the solutions using hypergeometric functions. For large
coating anisotropy we derive a simple form of the solution for the potential. The
inside of the ellipsoid and the surroundings are assumed dielectrically isotropic
and the potential is therefore given by standard results. By matching the
solutions across the boundaries we obtain the ellipsoidal particle polarizability,
which is written in terms of the standard depolarization factors and logarithmic
derivatives of the Heun’s equation solutions. The results above also allow us
to obtain the magnetic polarizability of a coated ellipsoid in a constant external
magnetic field.

PACS number: 41.20.Cv

1. Introduction

In many fields of physics shape as well as anisotropy are found to play important roles. For
instance fullerenes are found in different shapes and also have electronic properties which
are different in different directions. The use of metallic nanoparticles is becoming a hot
topic in nanoscale science. Many of their interesting properties stem from the high curvature
(i.e., shape) of these small particles. The unique properties of liquid crystals originate from
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Figure 1. A cut through a coated ellipsoid. The principal semiaxes perpendicular to the paper
are of lengths by (the outer ellipsoid) and ay (the inner ellipsoid), with ax � ay � az (and
bx � by � bz). We assume that av and bv, v = x, y, z, are confocal, i.e., related by b2

v = a2
v + t .

The ellipsoidal coating has dielectric function εc‖ in the normal direction and εc⊥ in the tangential
direction. The dielectric functions of the surrounding medium and inner ellipsoid are εm and εin
respectively.

its anisotropic structure. Within the field of biological physics the cell is perhaps the most
interesting entity. A cell is highly anisotropic and also in general of non-trivial shape.

A convenient way to study matter is to probe the system under investigation using external
electric, magnetic or electromagnetic fields. The shape and anisotropy of the system are in
general important for the response properties. There have been a number of investigations on
how shape and anisotropy affect response properties. In particular we mention: the electric
response properties of (coated and uncoated) ellipsoids are described in textbooks [1, 2]. In
[3] the polarizability of a sphere with an anisotropic coating is derived. In [4] similarly the
electric response of a cylinder with an anisotropic coating is investigated.

In this study we investigate the interaction between a constant external electric or magnetic
field and an ellipsoid with a dielectrically anisotropic coating (for instance cells and fullerenes
belong to this class of particles) by solving Gauss equation; for the coating region we assume
that the dielectric function in the direction parallel to the coating normal is different from the
dielectric function in the perpendicular direction. This investigation is organized as follows:
in section 2 we turn the relevant three-dimensional Gauss equation for the anisotropic coating
region in ellipsoidal coordinates into a one-dimensional Heun’s equation. We also recapitulate
the standard result for the isotropic case, i.e., for the potential in the inner part of the ellipsoid
and its surroundings. Section 3 gives the solutions of Heun’s equations for three cases: for
the general case the solution is given in terms of a series expansion. For spheroids we derive
solutions using hypergeometric functions. For large values of the coating anisotropy a simple
asymptotic form is given. In section 4 the solutions inside and outside are matched with
the result for the coating region in order to obtain the electric fields as well as the particle
polarizability. Finally in section 5 we summarize the results and discuss possible applications.

2. Formulation of the potential problem

In this section we investigate the electric (and magnetic) response of an ellipsoidal particle
with an anisotropic coating, where the coating dielectric function is different parallel and
perpendicular to the coating normal. In particular, we transform the three-dimensional Gauss
equation for the coating region into a one-dimensional Heun’s equation.

We consider the coated ellipsoidal particle in a constant external electric field E0. The
lengths of the principal semiaxes of the inner and outer ellipsoids are av and bv (v = x, y, z)

respectively, where ax � ay � az and bx � by � bz (see figure 1). In a standard fashion
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[2] the principal axes are assumed to be confocal, i.e., related as b2
v = a2

v + t . With this
choice of the principal axes the solutions in the different regions can be obtained within a
single coordinate system, which simplifies the analysis considerably. We denote the isotropic
dielectric function of the inner ellipsoid by εin. The coating has dielectric function εc‖ in the
normal direction and εc⊥ in the tangential direction, i.e.,

↔
εcoat = εc‖ξ̂ ξ̂ + εc⊥(η̂η̂ + ζ̂ ζ̂ ) (1)

where ξ̂ , η̂, ζ̂ are unit vectors perpendicular to the ellipsoidal surface ξ = constant, hyperboloid
surfaces η = constant and ζ = constant respectively (ξ, η and ζ are ellipsoidal coordinates to
be defined below). The isotropic dielectric function of the surrounding medium is denoted by
εm.3 For the applied potential we write

�0v = −E0v (2)

i.e., the external field E0 is constant and in the v-direction (v = x, y or z). We now seek the
induced potential. Inside each of the three regions the potential � satisfies Gauss equation
given by

�∇ · (
↔
ε · �∇�) = 0. (3)

We point out that the case of a permeable ellipsoid with an anisotropic coating in an external
homogeneous magnetic field B0 is described by equation (3) as well provided that � is taken

as the magnetic scalar potential and we replace
↔
ε→↔

µ, where
↔
µ is the magnetic permeability

of the different regions [5]. It is natural to use ellipsoidal coordinates [1] when treating the
problem above. For the isotropic case (inner part of the ellipsoid and the surrounding medium)
↔
ε is constant and scalar and the equation above reduces to Laplace equation, which has standard
solutions in ellipsoidal coordinates [1, 2]. For the anisotropic case (coating region) no such
standard solutions exist and the rest of this section is dedicated to transforming Gauss equation
for the coating region into the known Heun equation [6].

Let us now show that the three-dimensional Gauss equation (3) (together with the coating
dielectric function (1)) can be simplified by a proper ansatz for the potential. Let us first
recapitulate the definitions of the ellipsoidal coordinates, which are denoted by p = ξ, η and
ζ , and are given by the roots to the cubic equation (x, y and z are the Cartesian coordinates)
[1]

x2

a2
x + p

+
y2

a2
y + p

+
z2

a2
z + p

= 1. (4)

For ax � ay � az as we assume here (see figure 1), the ranges of the ellipsoidal coordinates
are ξ � −a2

z ,−a2
z � η � −a2

y and −a2
y � ζ � −a2

x . Surfaces of constant ξ are ellipsoids,
whereas surfaces of constant η and ζ are hyperboloids of one and two sheets respectively. In
particular ξ = 0 corresponds to the inner ellipsoidal surface, whereas ξ = t corresponds to
the outer surface. The Cartesian coordinates x, y and z can be explicitly expressed in terms of
ξ, η and ζ (see for instance [1]). In ellipsoidal coordinates Gauss equation (3), together with
the anisotropic dielectric function (1), is

(η − ζ )R(ξ)
∂

∂ξ

[
R(ξ)

∂�

∂ξ

]
+

εc⊥
εc‖

(ζ − ξ)R(η)
∂

∂η

[
R(η)

∂�

∂η

]

+
εc⊥
εc‖

(ξ − η)R(ζ )
∂

∂ζ

[
R(ζ )

∂�

∂ζ

]
= 0 (5)

3 All four dielectric functions εin, εm, εc‖ and εc⊥ are assumed to be spatially independent. However the dielectric
functions may in general depend on frequency.
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where R(p) = [(
a2

x + p
)(

a2
y + p

)(
a2

z + p
)]1/2

, for p = ξ, η, ζ . Note that in Gauss equation
(5) the dielectric constants εc‖ and εc⊥ enter only through the ratio εc⊥/εc‖ which is controlled
by the anisotropy of the coating (whereas for isotropic media the dielectric functions appear
only through the boundary conditions). We proceed by trying the ansatz (v = x, y, z) for the
potential (for the external electric field E0 along the v-direction)

� ∝ vGv(ξ). (6)

Inserting this ansatz into equation (5) we find that Gv(ξ) can indeed be taken as independent
of η and ζ and it satisfies the second-order differential equation

G′′
v(ξ) + kv(ξ)G′

v(ξ) +
1

4

[
1 − εc⊥

εc‖

]
mv(ξ)Gv(ξ) = 0 (7)

where a prime denotes derivative with respect to the argument, and

kv(ξ) = d

dξ
ln

[
R(ξ)

(
a2

v + ξ
)]

mv(ξ) = a2
x + a2

y + a2
z − a2

v + 2ξ

R2(ξ)
.

(8)

The ansatz equation (6) for the potential thus turns the three-dimensional Gauss equation (3)
for the coating region into a one-dimensional equation (7), where the only variable appearing
is the ‘radial’ ellipsoidal coordinate ξ . We point out that equation (7) applies to all cases
v = x, y and z, i.e., the external field being along any of the three ellipsoid principal axes.

Let us now show that equation (7) can be turned into the more familiar Heun equation. It is
then convenient not to work directly in terms of ξ but rather introduce the variable substitution

q ≡ e2
i

/(
1 + ξ

/
a2

x

)
(9)

where we have defined the ellipticity of the inner surface

e2
i ≡ 1 − a2

z

/
a2

x . (10)

Since, ax � ay � az, and ξ � −a2
z , we have 0 � e2

i � 1 and 0 � q � 1. For a
spherical surface (ax = ay = az) e2

i = 0. The surface of the inner ellipsoid corresponds to
q = e2

i (ξ = 0) and the surface of the outer ellipsoid is q = e2
o (ξ = t), where we have defined

the ellipticity of the outer surface

e2
o ≡ 1 − b2

z

b2
x

. (11)

Note that e2
i 
= e2

o in the general case. For a thin coating the ellipticities are related:
e2
i ≈ e2

o(1 + δ̄), where we have defined the relative coating thickness δ̄ ≡ t
/
b2

x . We also
define

s ≡ (
a2

x − a2
y

)/(
a2

x − a2
z

) = (
1 − a2

y

/
a2

x

)/
e2
i . (12)

We then have 0 � s � 1; s = 0 for an oblate spheroid (ax = ay), while s = 1 for a prolate
spheroid (ay = az). A coated cylinder (ay = az and ax → ∞) corresponds to s = 1 and
e2
i = e2

o = 1. One would also in general define the shape factor so ≡ (
b2

x − b2
y

)/(
b2

x − b2
z

)
for

the outer ellipsoid. However, using b2
v = a2

v + t , we have that s = so. The shape of a coated
ellipsoid is therefore defined through only three parameters, e2

i , e
2
o and s (all in the range

[0, 1]). We proceed by writing (see equation (7))

Gv(ξ) = Gv(u, s; q) = q(1−u)/2Hv(u, s; q) (13)
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Table 1. Parameters in Heun’s equation in terms of u = 1/2 (−1 ± [1 + 8εc⊥ε−1
c‖ ]1/2), where

εc‖ (εc⊥) is the dielectric function in the direction parallell (perpendicular) to the ellipsoid coating
normal. The shape parameter s is defined in equation (12).

v x y z

αv −u/2 1 − u/2 1 − u/2
β (1 − u)/2 (1 − u)/2 (1 − u)/2
γ 1/2 − u 1/2 − u 1/2 − u

δv 1/2 1/2 3/2
εv 1/2 3/2 1/2
λv (u − 1)u(s + 1)/(8s) (u − 1)[2s(u − 1) + u]/(8s) (u − 1)[2(u − 1) + su]/(8s)

where v = x, y or z as before and we choose u to satisfy the indicial equation
(u − 1)(u/2 + 1) +

(
1 − εc⊥ε−1

c‖
) = 0, or equivalently

u = u± = − 1
2 ± 1

2

[
1 + 8εc⊥ε−1

c‖
]1/2

. (14)

We note here that for an isotropic coating εc⊥ = εc‖ and we get u+ = 1 and u− = −2.
Equation (7) now yields

H ′′
v (q) + Lv(q)H ′

v(q) + Mv(q)Hv(q) = 0

Lv(q) = γ

q
+

δv

q − 1
+

εv

q − a

Mv(q) = αvβq − λv

q(q − 1)(q − a)

(15)

where a = 1/s,Hv(q) ≡ Hv(u, s; q) and the explicit expressions for the parameters in terms
of u are as given in compact form, for all cases, v = x, y and z, in table 1. Equation (15) has
the form of Heun’s equation [6, 7], which is a second-order homogeneous differential equation
with four regular singular points (at q = 0, 1, a = 1/s and ∞). The parameters must satisfy
the relation αv + β + 1 = γ + δv + εv , which is satisfied in our case for the parameters listed in
table 1. In a standard fashion we choose the ‘normalization’ such that Hv(u, s; q = 0) = 1.
Explicit solutions of Heun’s equation will be constructed in the next section. If one solution
to Heun’s equation is Hv(u, s; q) ≡ Hv(αv, β, γ, δv, εv, λv; q), then the second linearly
independent solution is H̃ v(u, s; q) ≡ q1−γ Hv(αv + 1 − γ, β + 1 − γ, 2 − γ, δv, εv; λ′

v, q),
where λ′

v = λv + (1 − γ )(aδv + εv) [6]. Since u takes two values, at first, there seem to be four
solutions for Gv(u, s; q), namely

G1v = q(1−u−)/2Hv(u−, s; q) G2v = q(1−u+)/2Hv(u+, s; q)

G3v = q(1−u−)/2H̃ v(u−, s; q) G4v = q(1−u+)/2H̃ v(u+, s; q).

However, using the fact that u+ + u− = −1 it is straightforward to show that G1v = G4v and
G2v = G3v and there are only two linearly independent solutions as it should. In practice it
therefore suffices to find one solution of Heun’s equation, and the second solution is obtained
by replacing u+ ↔ u− in that solution. In the general case the solution for the potential � for
the coating region is given by equations (6), (13) and the solution to Heun’s equation (15).

The region inside the ellipsoid as well as the surroundings are assumed dielectrically
isotropic in this study. For these regions the potential is given by the solutions to Laplace
equation (obtained by letting εc⊥ = εc‖ in equation (7)), which has the standard solutions
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in ellipsoidal coordinates [1, 2] G1v(ξ) = constant and G2v(ξ) ∝ ∫ ∞
ξ

dξ ′/[(
a2

v + ξ ′)R(ξ ′)
]
.

Converting to the variable q, one finds that G1v(ξ) corresponds to (see equations (9) and (13))

Hv(u+ = 1, s; q) = 1 (16)

and G2v(ξ) corresponds to Hv(u− = −2, s; q) with

Hv(u− = −2, s; q) = 3

2

∫ 1

0

t1/2

(1 − qt)δv (1 − qst)εv
dt (17)

where the normalization Hv(u, s; q = 0) = 1 is maintained. It is interesting to note here that
while in general no integral representation for the solution of Heun’s equation is known, the
above expression (17) gives an integral representation although for a very specific set of values
of the parameters (which can be obtained by setting u = −2 in table 1) in Heun’s equation.
In a standard fashion we now introduce the depolarization factors [1, 2] which in terms of the
variable q are

nv(s; q) ≡ 1

3
[fxfyfz]

1/2Hv(u = −2, s; q)

= 1

2
[fxfyfz]

1/2
∫ 1

0

t1/2

(1 − qt)δv (1 − qst)εv
dt (18)

where fv = fv(s; q) ≡ 1 − lvq with lx = 0, ly = s and lz = 1. The parameters δv and εv are
given in table 1. The depolarization factors are dimensionless shape functions and satisfy the
sum rule nx(s; q) + ny(s; q) + nz(s; q) = 1. From this sum rule one finds that (by symmetry)
nx = ny = nz = 1/3 for a sphere. It is also straightforward to show that for a cylindrical
surface we have nx = 0 and ny = nz = 1/2 [1].

Let us finally introduce some quantities involving the logarithmic derivatives of the Heun
equation solutions, which will be needed while applying the boundary conditions that the
potential and the normal component of the displacement field are continuous in section 4. We
define

rv(u, s; q) ≡ 1 − fv(s; q)

{
2q

∂

∂q
ln[Gv(u, s; q)]

}∣∣∣∣
q 
=1

= 1 − fv(s; q)

{
1 − u + 2q

∂

∂q
ln[Hv(u, s; q)]

}∣∣∣∣
q 
=1

(19)

where fv(s; q) has been defined before and we require q 
= 1 for reasons to be explained in
section 4. Using equations (16)–(18) we find that for the isotropic case we have

rv(u = 1, s; q) = 1 rv(u = −2, s; q) = 1 − 1

nv(s; q)
. (20)

The solution Hv(u, s; q) as given by equation (15), together with the depolarization factors
nv(s; q) (see equation (18)) and rv(u, s; q) defined in equation (19), completely determines
the electric response (and in particular the polarizability) of an ellipsoidal particle with an
anisotropic coating, as we will see in section 4. We will in the following section derive
expressions for these entities.

3. Solutions of Heun’s equation

In this section we present the solution Hv(u, s; q) of Heun’s equation and the entity rv(u, s; q)

introduced in the previous section for three cases: for the general case these entities are given
in terms of a series expansion. For spheroids (two of the ellipsoid principal axes are equal) we
derive expression for Hv(u, s; q) and rv(u, s; q) in terms of hypergeometric functions. For
large |u| a simple asymptotic form is given.
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3.1. General case

In this subsection we present the general solution Hv(u, s; q) of Heun’s equation and for
rv(u, s; q) in terms of a series expansion. We also investigate the spherical limit.

The solution of Heun’s equation (15) can be generated by series expansions around the
singular points. We here use the series expansion around q = 0 (valid for |q| < min(1, a =
1/s) = 1 [6]) which is

Hv(u, s; q) =
∞∑

m=0

km(u, s)qm (21)

where the coefficients satisfy the recurrence relation

(m + 1)(m + γ )km+1 − {[(1 + s)(m − 1 + γ ) + δv + sεv]m + sλv} km

+ s(m − 1 + αv)(m − 1 + β)km−1 = 0 (22)

with k0 = 1 and k−1 = 0 and we have left the v-dependence of the expansion coefficients km

implicit. The parameters are given in table 1. The above series is not defined for γ = −m

where m is a positive integer (m = 0, 1, 2, . . .). Explicitly we find that the first few coefficients
are

k1 = sλv

γ
k2 = 1

2(1 + γ )

{
[s(γ + εv) + sλv + γ + δv]

sλv

γ
− sαvβ

}
. (23)

Note that k1 only depends on s, λv and γ , whereas k2 depends on all parameters appearing
in Heun’s equation. Note also that with k0 = 1, the normalization of Hv(u, s; q) is such that
Hv(u, s; q = 0) = 1 as previously. The function rv(u, s; q) is given by equation (19); to
second-order in a power series expansion

rv(u, s; q) ≈ u + [(1 − u)lv − 2k1]q − 2
(
2k2 − k2

1 − lvk1
)
q2 (24)

where lx = 0, ly = s and lz = 1 as before and k1 and k2 are given by equation (23). For
the general case Hv(u, s; q) and rv(u, s; q) can straightforwardly be generated on a computer
using the recurrence relation (22). When only results valid up to second-order in q are needed
equations (21), (23) and (24) can be used. For the case when |u|  1 the limiting forms of
Hv(u, s; q) and rv(u, s; q) given in subsection 3.3 are useful.

When q → 1 (recall that 0 � q � 1) the series expansion above is not valid. The results
above for Hv(u, s; q) (the entity rv(u, s; q) is not defined for q = 1) must then be analytically
continued to q = 1, the so-called two-point connection problem [8]; this problem is difficult
and in general no closed form analytic results exist. We therefore leave this problem for future
studies. However, for the special case of spheroids the solutions can be written in terms of
hypergeometric functions as we will see in the next subsection. The hypergeometric functions
have standard analytic continuations to q = 1.

Let us finally consider the spherical limit q → 0 while e2
i → 0 [1, 2, 9]. From

the definition of the ellipsoidal coordinates, equation (4), we find that the spherical radial
coordinate r ≡

√
x2 + y2 + z2 in this limit is related to q (see equation (9)) according to

r2 = a2e2
i

/
q, where a = ax = ay = az is the inner radius of the sphere. Using equation (6)

together with equation (13) and the fact that Hv(u, s; q → 0) = 1 we find that the potential
in the coating region for a sphere with an anisotropic coating is

�|sphere ∝ vru−1 (25)

where v = x, y or z and u = u± is given in equation (14). This result for the potential agrees
with the result obtained in [3] as it should. The result for rv(u, s; q) in the spherical limit is

rv(u, s; q)|sphere = u (26)

as is seen from equation (24) or the definition (19).
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Table 2. Table of parameters for the spheroidal case in terms of u = 1/2(−1 ± [1 +
8εc⊥ε−1

c‖ ]1/2) (εc‖(εc⊥) is the dielectric function in the direction parallel (perpendicular) to the

ellipsoid coating normal) and we have defined � ≡ [u(u + 1)/2]1/2 =
√

εc⊥ε−1
c‖ .

s = 1 s = 0

v x z x z

α̃v −u/2 (−u + �)/2 (−u + �)/2 (1 − u)/2
β̃ (1 − u)/2 (−u + 1 + �)/2 (−u − �)/2 (1 − u)/2
γ̃ 1/2 − u 1/2 − u 1/2 − u 1/2 − u

δ̃v 0 (� − 1)/2 0 0
ε̃v 1 −1 1 −1
λ̃v 1 −� −� 0

3.2. Spheroids

In this subsection we present analytical expressions for Hv(u, s; q) and rv(u, s; q) for
spheriodal particles (i.e., two of the principal axes are equal). We also express the
depolarization factor nv(s; q) in terms of elementary functions and investigate the cylindrical
limit.

Let us consider the solution of Heun’s equation for spheroids, i.e., ellipsoids having two
of the principal axes equal. We must then distinguish between four cases: (i) prolate spheroids
(ay = az, or s = 1) with the external electric field along x-axis (i.e., along the symmetry axis),
(ii) prolate spheroids having the electric field along the z-axis (perpendicular to the symmetry
axis), (iii) oblate spheroids (ax = ay , or s = 0) with the external electric field along the x-axis
(i.e., perpendicular to the symmetry axis), (iv) oblate spheroids the electric field being along
the z-axis (the symmetry axis). Since for spheroids we have s = 0 or s = 1 the number of
singularities in Heun’s equation (see equation (15)) is reduced from four to three. Heun’s
equation is then turned into the class of hypergeometric equations [6, 7], and the solutions can
be written in terms of hypergeometric functions. Explicitly in our case

Hv(u, s; q) = (1 − q)δ̃vF (α̃v, β̃v, γ̃ ; q) (27)

and4

rv(u, s; q) = λ̃v + (u − λ̃v)
F (α̃v, β̃v + ε̃v, γ̃ , q)

F (α̃v, β̃v, γ̃ ; q)
(28)

where the parameters are given in terms of u (for all v = x, y and z, i.e., the field along any
of the principal axes) in table 2, and F(α̃v, β̃v, γ̃ ; q) is the hypergeometric function5. Note
that (since F(α̃v, β̃v, γ̃ ; q = 0) = 1) we have rv(u, s; q) = u for a sphere as it should. The
hypergeometric functions have well defined analytic continuations to q = 1 (see [10, 11]
and the cylindrical limit investigation below). The solution for the potential in the coating
region as given by equations (6), (13) and (27) is hence valid for the full range of q-values
(0 � q � 1).

4 In order to obtain equation (28), we have used equations (15.2.3) and (15.2.5) in [10]. The expression for rv(u, s; q)

can be further manipulated by using equation (15.2.14) in the same reference if one wishes.
5 For large values of |u| the limiting forms of Hv(u, s; q) and rv(u, s; q) given in subsection 3.3 are useful for
practical computations.
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For the case of spheroids the depolarization factors (18) can be expressed in terms of
elementary functions. By explicitly evaluating the integrals we find

nx(s = 1; q) = (1 − q)

2q3/2

[
ln

(
1 +

√
q

1 − √
q

)
− 2

√
q

]

nz(s = 1; q) = 1

4q3/2

[
2
√

q − (1 − q) ln

(
1 +

√
q

1 − √
q

)]

nx(s = 0; q) =
√

1 − q

2q3/2
[arcsin

√
q −

√
q(1 − q)]

nz(s = 0; q) = 1

q3/2
[
√

q −
√

1 − q arcsin
√

q].

(29)

We note that the depolarization factors for prolate spheroids satisfy the sum rule nx(s =
1; q) + 2nz(s = 1; q) = 1 as it should. For oblate spheroids we similarly have the sum rule
2nx(s = 0; q) + nz(s = 0; q) = 1. It is also straight forward to show (by for instance using
the integral representation of the hypergeometric functions [10]) that for the isotropic case
rv(u, s; q) as given by equation (28) satisfies equation (20) with the above expressions for the
depolarization factors.

We finally consider the cylindrical limit s = 1 and q → 1 while a2
x → ∞ [1, 2, 9] and

field along the short axis (z-axis) as an example of analytic continuation to q = 1. We first note
that in the cylindrical limit we can use equation (4) to relate the cylindrical radial coordinate
R ≡

√
y2 + z2 to the variable q according to R2 = a2

x(q
−1 − 1). The potential is given by

equations (6), (13) and (27), where the expression for Gz(u, s; q) can be written in terms of
q−1 − 1 (and hence in terms of the radial cylindrical coordinate R) using standard analytical
continuations of the hypergeometric functions6. We then find that the potential equation (6) in
the coating region for a cylinder with an anisotropic coating (field along the z-axis) becomes

�|cyl ∝ −zR�−1 + +zR
−�−1 (30)

with ± = (ax)
1±��(1/2 − u)�(±�)/(�([−u ± �]/2)�([−u + 1 ± �]/2)) where �(z) is

the gamma function and � =
√

εc⊥ε−1
c‖ as before (� = 1 for an isotropic coating). The same

result as given by equation (30) can be obtained by a direct solution of Gauss equation in
cylindrical coordinates [4].

3.3. Large |u| expansion and WKB analysis

In this subsection we provide a large |u| (i.e., large coating anisotropy, |εc⊥/εc‖|  1)
expression for the entities Hv(u, s; q) and rv(u, s; q), obtained through a direct method as
well as using a WKB (Wentzel–Kramer–Brillouin) analysis of Heun’s equation.

Let us investigate the functions Hv(u, s; q) and rv(u, s; q) (see equation (19)) for large
|u| (|u|  1). The function Hv(u, s; q) satisfies Heun’s equation (15). We now make the
following ansatz:

Hv(u, s; q) = exp

(
−u

∫ q

0
Kv(q

′) dq ′
)

(31)

and note that Hv(u, s; q = 0) = 1 provided that Kv(q) is a regular function which is non-
singular at q = 0. Inserting this ansatz into equation (15) we get the following equation for
Kv(q),

−uK ′
v(q) + u2K2

v (q) − uLv(q)Kv(q) + Mv(q) = 0 (32)
6 We here use the analytic continuation of the hypergeometric function as contained in equation (15.3.9) in [10]
together with equation (15.3.3) in the same reference.
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which is a first-order nonlinear equation, which cannot in general be solved. We note that
only the first term contains a derivative with respect to q. Retaining only terms to highest
(second) order in u the first term drops out and this equation reduces to the algebraic equation
(i.e., taking the large-u form for Lv(q) and Mv(q) and then cancelling a common u2-factor)

K2
v (q) +

1

q
Kv(q) +

1

4q2

(
1 − 1

2fv

[
F − 1

fv

])
= 0 (33)

with

F = F(s; q) ≡ 1

fx

+
1

fy

+
1

fz

(34)

where we have assumed q 
= 1 and fv = fv(s; q) = 1 − lvq with lx = 0, ly = s and lz = 1 as
before. The solution of this equation is

Kv(q) = − 1

2q

{
1 −

[
1

2fv

(
F − 1

fv

)]1/2
}

(35)

where we have chosen the root that is non-singular at q = 0 in order to make the solution
regular for |q| < 1 and hence Hv(u, s; q = 0) = 1 (see equation (31)). For large coating
anisotropy (|u|  1) the solution of Heun’s equation (15) is thus given by equations (31) and
(35). These expressions are useful for numerical computations when |u| is large.

Using the result above we can easily obtain an expression for rv(u, s; q) by noting that
H ′

v(u, s; q)/Hv(u, s; q) = −uKv(q). For large |u| (|u|  1) equation (19) then becomes

rv(u, s; q) = uRv(s; q) Rv(s; q) =
[
F(s; q)fv(s; q) − 1

2

]1/2

. (36)

Note that rv(u, s; q) is proportional to u for large |u| multiplied by a geometric shape function
Rv(s; q). The results obtained above should prove useful for instance for the electric response
at frequencies where the coating dielectric function has a resonance.

The results above can also be obtained through a WKB (or phase integral) method; for a
detailed WKB analysis of Heun’s equation, see [12]. We make the following ansatz for the
solution of Heun’s equation (15):

Hv(u, s; q) = �v(q) exp

[
−1

2

∫ q

Lv(q
′) dq ′

]
. (37)

One then obtains the equation for �v(q) as

� ′′
v (q) − Tv(q)�v(q) = 0 (38)

where Tv(q) = L′
v(q)/2 + L2

v(q)
/

4 − Mv(q) with Lv(q) and Mv(q) being given in
equation (15). Note that the equation above is an exact reformulation of Heun’s
equation (15). Equation (38) has the same form as the one-dimensional Schrödinger equation
for a particle moving in a potential [13]. Methods developed in this field of physics can thus
be directly applied to the present problem. We here limit the discussion to the zeroth order
WKB analysis of equation (38) [13], which gives the acceptable solution

�v(q) = exp

[
−

∫ q

Tv(q
′)

1
2 dq ′

]
. (39)

For large |u| the solution of Heun’s equation as given by equations (38) and (39) agrees with
the result given by equations (31) and (35). Since we are concerned with the logarithmic
derivative of Hv(u, s; q) through rv(u, s; q), higher order WKB yields insignificant correction
to equation (36) for |u|  1.
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4. Matching boundary conditions

In this section we match the solutions for the potentials in the inside, coating and surrounding
in order to obtain the electric fields in the different regions as well as the polarizability for an
ellipsoidal particle with an anisotropic coating.

Using the results from the previous two sections together with the appropriate physical
constraints we now give the potential in the inner ellipsoid, the coating and the medium
outside the ellipsoid respectively. We have the following solutions for the potentials of the
inner ellipsoid and the coating (v = x, y, z):

�in = AvvGv(u = 1, s; q) = Avv (40)

and

�coat = BvvGv(u−, s; q) + CvvGv(u+, s; q) (41)

where Gv(u, s; q) is given by equation (13) and we have required the potential to be non-
singular. For the potential outside the coated ellipsoid we write

�out = �0v + �p (42)

where

�p = DvvGv(u = −2, s; q)|q 
=1. (43)

We have required that the potential satisfies � → �0v (see equation (2)) at infinity, which
in turn requires us to assume q 
= 1 (for q = 1 the induced potential �p as given by
equation (43) is not zero at infinity as is seen, for instance, in the cylindrical result (30) with
� = 1). The subsequent results obtained in this section are therefore only valid for 0 � q < 1
and this is also the reason why we required that q 
= 1 in the definition of rv(u, s; q) in
equation (19) (for q = 1 we must replace �p in equation (43) by the appropriate linear
combination of the u+ = 1 and u− = 2 isotropic solutions that vanish at infinity). The
unknown constants Av , Bv,Cv and Dv are determined through the boundary conditions.

Having the formal solutions for the potential we now proceed to match the solutions
across the boundaries.We impose the conditions that the potential � and normal component
of the displacement field are continuous, so that ε‖∂�/∂ξ is continuous, to determine the
unknown constants Av,Bv, Cv and Dv . In order to determine the normal component of the
displacement field we have the useful result ∂v/∂q = −v/(2qfv). Furthermore we find
that

∂

∂q
[vGv(u, s; q)] = − v

2qfv

q(1−u)/2Hv(u, s; q)rv(u, s; q) (44)

where rv(u, s; q) is given in equation (19) and fv = fv(s; q) has been defined previously.
The entity rv(u, s; q) enters the analysis through the condition that the displacement field is
continuous. If we also define εi ≡ εin/εm, ε‖ ≡ εc‖/εm and ε⊥ ≡ εc⊥/εm and recall that the
inner and outer ellipsoidal surfaces correspond to q = e2

i (ξ = 0) and q = e2
o (ξ = t), the

unknown constants are found to be

Av = E0
Hi

v(u+)

QvHo
v (u+)

(
eo

ei

)(u+−1)

ε‖
[
ri
v(u+) − ri

v(u−)
]

Bv = E0
e
(u−−1)
o

Qvno
vH

o
v (u−)

ρv

[
ε‖ri

v(u+) − εi

]
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Cv = −E0
e(u+−1)
o

Qvno
vH

o
v (u+)

[
ε‖ri

v(u−) − εi

]

Dv = E0
1

3Qvno
v

(
f o

x f o
y f o

z

)1/2

e3
o

{[
ε‖ro

v (u+) − 1
][

ε‖ri
v(u−) − εi

]
− ρv

[
ε‖ro

v (u−) − 1
][

ε‖ri
v(u+) − εi

]}
(45)

where7

ρv ≡
(

eo

ei

)(u+−u−)
Ho

v (u−)H i
v(u+)

Ho
v (u+)H i

v(u−)
(46)

and

Qv = [
ε‖ro

v (u+) + 1
/
no

v − 1
][

ε‖ri
v(u−) − εi

]
− ρv

[
ε‖ro

v (u−) + 1
/
no

v − 1
][

ε‖ri
v(u+) − εi

]
. (47)

We have introduced the short-hand notation: ri
v(u±) ≡ rv

(
u±, s, e2

i

)
and ro

v (u±) ≡
rv

(
u±, s, e2

o

)
. We have also defined Ho

v (u±) ≡ Hv

(
u±, s; e2

o

)
and Hi

v(u±) ≡ Hv

(
u±, s; e2

i

)
and f o

v ≡ f
(
s; e2

o

)
. It is interesting to note that it is only the depolarization factor

no
v ≡ nv

(
s; e2

o

)
of the outer surface that appears explicitly in the expressions above.

The electric fields are obtained by taking the gradient of the potential, explicitly
�E = −�∇�. Let us for completeness give the results for the electric fields in the three
different regions. The field �Ein = −�∇�in inside the ellipsoid is particularly simple. When
the field is along the v-axis we have

�Ein = −Avv̂ (48)

where v̂ is a unit vector in the v-direction and Av is given in equation (45). The electric
field inside the ellipsoid is thus constant along the direction of the external field. We note
for instance that the electric field is zero inside the ellipsoid if ε‖ = 0. This occurs if ε−1

‖
has a resonance, then the entire potential drop is across the coating and there is no potential
drop ‘left’ for the inner part. The electric field in the coating region is �Ecoat = −�∇�coat, which
explicitly becomes

�Ecoat = −
{

[BvHv(u−, s; q)q(1−u−)/2 + CvHv(u+, s; q)q(1−u+)/2]v̂

+
v/fv(

x2/f 2
x + y2/f 2

y + z2/f 2
z

)1/2 [BvHv(u−, s; q)(rv(u−, s; q) − 1)q(1−u−)/2

+ CvHv(u+, s; q)(rv(u+, s; q) − 1)q(1−u+)/2]ξ̂

}
(49)

where ξ̂ is a unit vector perpendicular to the ellipsoidal surface ξ = constant as previously
and x, y and z are the usual Cartesian coordinates. The electric field in the coating thus in

7 For two important cases ρv (see equation (46)) can be expressed in terms of ro
v (u±): (i) when |u|δ̄ � 1, i.e., for a

small relative coating thickness and not ‘too large’ u. (ii) We have a thin coating, δ̄ � 1 and large |u|(|u|  1). For
both of these cases we have ρv ≈ exp{−δ̄[ro

v (u+) − ro
v (u−)]/(2f o

v )}. This result can be considered as a thin relative
coating (δ̄ = t/b2

x � 1) result which is valid for most practical purposes.
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general has components in both the v̂-direction and the ξ̂ -direction. Finally the electric field
�Eout = −�∇�out outside the ellipsoid is

�Eout = E0v̂ − 3Dv(fxfyfz)
−1/2nv(s; q)q3/2

×
[
v̂ − v/fv(

x2
/
f 2

x + y2
/
f 2

y + z2
/
f 2

z

)1/2

1

nv(s; q)
ξ̂

]
. (50)

The three expressions above give the complete result for the electric field in all space. Using
equations (48)–(50) together with the explicit expressions for Hv(u, s; q) and rv(u, s; q) from
the previous section, the electric field distribution in and around an ellipsoid with an anisotropic
coating can thus be conveniently obtained.

Let us finally obtain the polarizability αvv (v = x, y, z) of the ellipsoid. By taking the
asymptotic limit of �p (see equations (43) and (45)) we identify the induced dipole moment
as pv = 4πε0εmαvvE0 (ε0 is the permittivity of free space) where we have introduced the
polarizability of an ellipsoid with an anisotropic coating according to

αvv = Vo

4πno
v

×
[
ε‖ro

v (u+) − 1
][

ε‖ri
v(u−) − εi

] − ρv

[
ε‖ro

v (u−) − 1
][

ε‖ri
v(u+) − εi

]
[
ε‖ro

v (u+) + 1
/
no

v − 1
][

ε‖ri
v(u−) − εi

] − ρv

[
ε‖ro

v (u−) + 1
/
no

v − 1
][

ε‖ri
v(u+) − εi

] (51)

with Vo = 4πbxbybz/3 being the (outer) volume of the ellipsoid. This result for the
polarizability, equation (51), of an ellipsoidal particle with an anisotropic coating is the
main result of this study. The geometry of the particle enters through the five geometric
entities no

v, r
i
v(u±) and ro

v (u±). The standard isotropic depolarization factor no
v depends only

on the shape (e2
o and s), whereas ri

v(u−) and ro
v (u+) couples the geometry to ε⊥ε−1

‖ . Let
us now consider some limits. We start with the isotropic ellipsoidal shell (ε‖ = ε⊥). We
then have u+ → 1 and u− → −2 and rv(u, s; q) is then given by equation (20). We
also have ρv = Vin

o
v/Von

i
v where Vi = 4πaxayaz/3 is the volume of the inner ellipsoid

and ni
v ≡ nv

(
s; e2

i

)
is the depolarization factor for the inner surface. The corresponding

result for the polarizability then agrees with that found in [2] as it should. In the spherical
limit we have no

v = 1/3, ri,o
v (u) → u and ρ = (a/b)(u+−u−) where a = ax = ay = az

is the radius of the inner spherical surface, whereas b = bx = by = bz is the radius of
the outer surface. This result agrees with the result obtained in [3]. For the cylindrical
limit the results above for the polarizability are not defined (see the discussion following
equation (43)). However using the appropriate solutions (see equation (30)) that satisfy
the physical constraints and matching the solutions across the boundaries the expression for
the polarizability can be worked out separately [4]. One then finds that the polarizability
(field along short axis, i.e., the z-axis) takes the same form as given by equation (51), with:
no

z = 1/2, ri
z(u±) = ro

z (u±) = ±� = ±√
ε⊥/ε‖ and ρz = (a/b)2�, where a = ay = az is

the radius of the inner cylindrical surface and b = by = bz is the outer cylindrical radius. For
the general case the relevant expressions are given in subsection 3.1. For spheroidal particles
the results in subsection 3.2 should be used. Subsection 3.3 contains the results necessary to
obtain the polarizability for large |u|.

We finally point out that the results above are directly applicable to the case of a
permeable ellipsoid with an anisotropic coating in a constant external magnetic field B0

[5]. The induced magnetic dipole moment �m is then related to the external magnetic field
according to mv = 4π(µ0µm)−1αvvB0 (v = x, y or z) where µm is the magnetic permeability
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of the medium surrounding the particle (µ0 is the permeability of free space). The magnetic
polarizability αvv is given by equation (51) with the replacements εi → µin/µm, ε‖ → µc‖/µm

and ε⊥ → µc⊥/µm, where µin is the magnetic permeability of the inner part of the ellipsoid
and µc⊥(µc‖) is the permeability of the coating in the direction perpendicular (parallel) to the
coating normal.

5. Summary and conclusions

In this paper we have studied the electric and magnetic response of an ellipsoidal particle
with a dielectrically anisotropic coating (the dielectric function of the coating being different
parallel and perpendicular to the coating normal). For the coating region we found that the
potential can be written in terms of solutions to Heun’s equation (15), which was derived from
the three-dimensional Gauss equation for the potential in the ellipsoidal coordinates. We gave
solutions to Heun’s equation in three forms: for the general case we obtained solutions in
terms of a series expansion. For the case of spheroidal particles we obtained solutions in terms
of hypergeometric functions. When the coating anisotropy is large (i.e., |ε⊥/ε‖|  1, where
ε⊥ (ε‖) is the relative dielectric function perpendicular (parallel) to the coating normal) we
derived a simple asymptotic form of the solution for the potential. By matching the solutions
across the boundaries we obtained the ellipsoidal particle polarizability, equation (51), in
terms of the standard depolarization factors and logarithmic derivatives of the Heun equation
solutions.

From the mathematical point of view the present study provides two new insights into
Heun’s equation. (i) In general no integral representation for the solution has been found.
However, the result as contained in equation (17) provides such a representation although for
a very specific set of parameter values. (ii) Whenever the parameters in Heun’s equation are
parametrized by a parameter denoted by, say, u then the techniques used in subsection 3.3
to convert Heun’s equation into an algebraic equation can prove useful in order to obtain the
large |u|(|u|  1) form for the solution. We also want to point out that the theoretical analysis
of Heun’s equation is not as developed as is the analysis of, for instance, the hypergeometric
equation. Progress in this field of mathematics may thus provide further insights into the
present problem.

The results obtained here for the electric and magnetic response of an ellipsoid with
an anisotropic coating are general and could find applications in many areas of physics.
For example, the simplest and widest application of technological importance (e.g., in
environmental studies, detectors, etc) would be the scattering, absorption and emission of
light by ellipsoidal nanoparticles with ultra-thin coating (e.g., gold film on a nanoparticle),
where the anisotropy is naturally incorporated in ultra-thin films due to growth induced
anisotropy; a detailed theoretical study here would involve numerical computations, along the
lines described by Mishchenko et al in [9] with only nominal modifications of the computer
programs given by them. Such theoretical modelling would help in selecting a suitable coating
for tailor made optical properties. We are currently working on some specific cases for future
publications. Another possible application is to the physics of fullerenes. It is known that
fullerenes are non-spherical [14], and their dielectric functions are generally anisotropic [3],
which affect their physical (e.g., optical, interparticle forces, etc) properties. The results
obtained here can be directly applied to the response of fullerenes with suitable modelling.
The most interesting application of the result of this study is the electric [15], magnetic [16]
and electromagnetic response of biological cells. We are also working on this problem by
incorporating microscopic models for the cell membrane as well as for the cell interior into
the present scheme and shall report elsewhere.
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